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SUMMARY

This paper presents methodologies for greatly improving machine structural dynamics by using design sensitivity

analyses and evaluative parameters. First, design sensitivity coefficients and evaluative parameters of structural dynamics are

described. Next, the relations between the design sensitivity coefficients and the evaluative parameters are clarified. Then,

design improvement procedures of structural dynamics are proposed for the following three cases: (1) addition of elastic

structural members, (2) addition of mass elements, and (3) substantial changes of joint design variables. Cases (1) and (2)

correspond to the changes of the initial framework or configuration, and (3) corresponds to the alteration of poor initial design

variables. Finally, numerical examples are given for demonstrating the availability of the methods proposed in this paper.

1. INTRODUCTION

In usual design optimization of machine structures, a framework pattern for the complete structure is definite and

initial design variables which are usually tentatively given are modified so that the objective function is improved. In such
design optimization, design sensitivity coefficients of evaluative parameters can be used for finding the most preferable design

change directions. However, improvement of the product performance or characteristics, which is attained under the condition

of a constant framework and using poor initial design variables, often is not satisfactory. Furthermore, machine structural

dynamics depend on characteristics at many natural modes, and on damping characteristics which are yet unclear. Hence,

the relationships between the machine structural dynamics and design variables are very complicated. Application of design

sensitivity analyses to optimization of structural dynamics is not simple.

This paper proposes design decision making methods of structural dynamics which intend to greatly increase product

performance of machine structures. First, evaluative parameters of structural dynamics are listed, and design sensitivity co-

efficients of the parameters are derived. Next, the relations between the design sensitivity coefficients and the parameters of

displacement, internal vibratory force, and energy distributions are analyzed. Based on the analyses, priorities among the

evaluative parameters are clarified. Then, using the design sensitivity analyses and the relations between parameters, design

improvement procedures of structural dynamics are constructed for each of the three cases: (1)addition of elastic structural

members, (2) addition of mass elements, and (3) substantial changes of joint design variables. Addition of elastic structural

members and mass elements on the original design is utilized for decreasing the static compliance and for balancing the fre-

quency response over the frequency range, respectively. Substantial changes of joint design variables are made for balancing

the frequency response and for increasing damping ratios. Finally, the effectiveness of the procedures is demonstrated by
applying them to a structural model.

2. EVALUATIVE PARAMETERS FOR STRUCTURAL DYNAMICS

AND INFORMATION FOR DESIGN CHANGES

A machine structure has point E where vibrational (excitational) force or static force generates, and point G where

vibrational or static displacement produced by that force causes reduction of the machine performance. The transfer function

of a vibrational system defining the relation between the input force at point E and the displacement output at point G is

expressed as the "frequency response".

Fig. 1 shows an example of the receptance frequency response R(=D/F) which is obtained from the displacement D

at point G caused by the harmonic force F at point E.

According to the requirements for the product performance, the following changes of the characteristics are required:
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(1) decrease the static compliance fs,

(2) increase/decrease a natural frequency COn,

(3) increase the damping ratio _'n at a natural mode,

(4) decrease the receptance value R n at a natural mode.
In the case of machine tools, the maximum receptance value Rn.ma x at the cutting point is evaluated for increasing

the stability against regenerative chatter (refs. 1 and 2), and natural frequencies are evaluated for diminishing the forced vibra-
tional troubles. Even in other machines' cases concerned with transient dynamic response, some treatment among (1) through

(4) can be applied. Hence, the "frequency response" is the most fundamental characteristic of structural dynamics.

In the following nomenclature, "direct" means that the point and direction of the exciting (or static) force are the

same as the pick-up point and direction of displacement, while "cross" means that those points and directions are not the
same.

2. 1 Evaluative Parameters of Frequency Response

The equation of motion in a linear vibrational system having multiple-degrees of freedom is expressed by the following

equation:

[M]{X} + [C]{:_} +i[H]{X} + [K]{X} = {F} (1)

where [M], [K], [C], and [HI are the mass, stiffness, viscous damping, and hysteretic damping matrices, respectively; where

{X} and {F} are the column vectors representing the displacements and the forces; and where i designates the imaginary
unit.

The angular natural frequency at an arbitrary nth natural mode is denoted as COn- For easy expansion of equations, a
displacement eigenvector (Xn} at each of the natural modes is normalized as follows:

{Xn} T[M] {Xn} = 1 (then, (Xn} T [K] (Xn} =COn 2 )

The equation showing the relation between
ceptance matrix [R(co)] as follows:

{X} and {F} at a given angular frequency co is expressed using re-

{X} = [R(co)] (F) (2)

The receptance matrix under the assumption of the proportional damping vibrational system is obtained using the

orthogonality relations of displacement eigenvectors:

[R(CO)l = _ [fml ] (3)

m=l 1 - (--_-m)2 + 2i _¢om _'m J

where [fm ], tom, and _'m are respectively the modal flexibility matrix, angular natural frequency, and damping ratio at the

mth natural mode. The modal flexibility matrix (ref. 3) is obtained using the displacement eigenvector { Xm ] and stiffness
matrix [K] as follows:

{Xm}{'Xm)T
[fm] - (4)

{Xm}T[K] {Xm}

Damping ratio _'m at the mth natural mode is obtained for a viscous damping vibrational system as follows:

corn{ Xm/T[ C] {Xm./

2{Xm}T[KI { Xm}
(5)
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When no other natural frequencies having large modal flexibility exist near the nth natural frequency, the receptance value

at the nth angular natural frequency, COn, is approximated from equation (3) using the following equation:

i[fn]
[R(COn)] --_ + _,

2_-n m=lman - [fm] 11 - ( COn )2
- Cam -

(6)

Since [R(o)] is equivalent to static compliance [fs] by substituting zero for co in eq. (3), the following relation is
established between the modal flexibility matrix, [fm], and the static compliance matrix, [fs]-

[fs] = m_=l [fml (7)

By selecting diagonal elements at the j-row and j-column of matrices [fs] and [fm] in eq. (7), the following relation is ob-

tained (ref. 3).

fs(j, j) = m_=lfm (j, j) (8)

Since the values of fm(j, j) are always positive, the relation in eq. (8) means that the summation of fm(j, i) at all natural modes
is equal to the value of static compliance fs(j, j).

2.2 Design Sensitivity Coefficients of Evaluative Parameters (ref. 3)

The design variables are denoted by a vector b = { bl, b2, • • •, bN } x, where N is the number of design variables.

Design sensitivity coefficients, OCOn/Ob, and a { Xn } lab of an angular natural frequency, COn, and a displacement eigenvector,

{ Xn }, with respect to a design variable vector, b, are obtained by applying the orthogonality relations of displacement eigen-

vectors to the eigenvalue equation of motion partially differentiated with respect to b, as follows:

aCOn _ 1 aCO_ 1

ab 2COn ab 2COn
"{ Xn }'T - a[K]t_ - CO_--_ ] {Xn } (9)

a [K] _ CO_0 [M] ] {Xn ] {XmI ]

a {'Xn}_ 1 a[M] {XmlT[ 0---g- ab

{Xn}T--{Xn} {Xn} + _ -5- .AFT f (10)
Ob 2 ab m=l

man COn - Cam

Using equations (9) and (10), design sensitivity coefficients of modal flexibilities are derived from eq. (4):

a[fn] 1
4

ab COn
[Xn} IXn T {Xn}T a[K]_{xn}

Ob

i a [K] _ CO2n3 [M] ]

{Xm}T [ ab (11)1 . -- _ ]{Xn} [{Xm} {Xn} T+ {Xn} {Xm} T]

2
+ CO2n m_=l COn2 - COrn

man

Similarly, design sensitivity coefficients of damping ratios _n for a viscous damping vibrational system are derived from eq. (5)
as follows:

a_'___nn.= 1 _ 1 aCO2n { Xn }T [C][ Xn}

ab { Xn } T [K] { I n} [ 4COn 8b
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a{Xn} T 1 a[C]

"l'O3n 0b [C] {Xn} +--_'-b) n {Xn} T {Xnlab

0{Xn}T }- 2_'n ab [m] {Xn} - _'n {Xn} X a[m]Ob {x.} 92)

Design sensitivity coefficients with respect to fundamental structural elements of spring elements, concentrated mass
elements, and damping elements are obtained from eqs.(ll) and (12).

(i) Spring element

Spring stiffness k of a spring element at point J (for example, a joint) in the machine structural model is considered

as a design variable. The design sensitivity coefficient of the direct modal flexibility fn(c, c) at the nth natural mode at point
C is:

0fn(C, C) 2 ® fm(C, J) " fn(C, J)

0k - fn(c,J) + 2 mZ=l( Wn2 )
mC:n --- 1

,Om

(13)

where fn(c, J) and fm(c, J) are the cross modal flexibilities at the nth and the mth natural modes, respectively. The design
sensitivity coefficient of the damping ratio at the nth natural mode is:

0_n _n

0k 2
fn(J, J) (14)

where fn(J, J) is the direct modal flexibility at point J.

(ii) Concentrated mass element

The mass, MI, of a concentrated mass element at point I in a machine structural model is considered as a design variable.

The design sensitivity coefficient of the direct modal flexibility fn(c, c) at point C is:

Ofn(C'C)oMI -26°2nfn(C, I) m_=l(_ fm(C,I)Wn2 )

m_n 1 - --
2

03 m

(15)

(iii) Damping element

In a viscous damping vibrational system, the design sensitivity coefficient of the damping ratio with respect to viscous
damping coefficient c of a damping element at point J is:

0_n _n

0c 2
fn(J, J) (16)

2.3 Information of Energy Distributions

2.3. 1 Relationships between changes of natural frequencies and energy distribution rates (ref. 4)

It is assumed that the stiffness matrices at subsystems s and r of the machine structure are [Ks] and [Kr] , the mass
matrices at subsystems s and r are [Ms] and [Mr], and the displacement eigenvectors corresponding to subsystems s and r are

{Xn} s and { X n } r. Now, the values of the stiffness matrix [Ks] at subsystem s increase (or decrease) a times to become

[K's], and the values of the mass matrix [Mr] at subsystem r increase (or decrease) /3 times to become [M'r] as shown in
eqs. (17) and (18):

[K;] = [Ks] +a[Ks] (17)
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[Mr] = [Mr] +/3[Mr] (18)

a and /3 being small values. The variable component dcoZnof the square of an angular natural frequency 6% is obtained as
follows:

a {Xn} sT [Ks] {Xn } s - /3C02n { Xn ) rT [M_] {Xn } r
dco2n = (19)

{ Xn } T [M] {Xn }

The following equation is obtained multiplying both sides of eq. (19) by 1/co2n:

dco2n ot {Xn} s T [Ks] {Xn} s-/3co2n {Xn} r T [Mr] {Xn} r

{X.) xco2n con [M] { X n }
(20)

2In eq. (20), {Xn }s T [Ks] {Xn} s and con {Xn} rT[Mr] {Xn} r are respectively twice the potential energy (strain energy)

at subsystem s and the kinetic energy at subsystem r in the initial structural design. Hence, those have positive values.
co2n{Xn} T[M] {Xn} is twice the maximum kinetic energy in the complete structure which also has a positive value.

The following rule is established from eq. (20): when the design change is conducted so that the rigidity is increased

(that is, ct has a positive value) / decreased (that is, a has a negative value) at the member or the element which has the larger

potential energy distribution, or the mass is decreased (that is,/3 has a negative value) / increased (that is,/3 has a positive value)
at the member or the element which has the larger kinetic energy distribution, the natural frequency increases / decreases

more effectively.

2.3.2 Relationships between design sensitivity coefficients and energy distribution rates

The maximum potential energies stored in the whole machine structure and in the spring element with spring stiffness

k at point J at the nth natural mode are denoted as VTn and Vjn , respectively. The design sensitivity coefficients of the

natural frequency con and the damping ratio _'n at the natural mode with respect to spring stiffness k have the relation with

the potential energy distribution rate, Vjn/VTn , as shown in the following equations.

0COg -- COg . Vjn

Ok k ( _ ) (21)

O_'n _ _'n ( VJ____o__n) (22)

Ok 2k VTn

A similar relation for the modal flexibility at point C is derived when the modal flexibility at a natural mode is far

greater than that at any other natural mode (ref. 3):

Ofn(C,C) ___ fn(C,C) . Vjn

Ok k ( _ ) (23)

In this case, the modal flexibility at the natural mode can be decreased by increasing the spring stiffness of the spring element

having the high potential energy distribution.

2.4 Information of Static Displacement and Internal Vibratory Force

(i) Static displacement

It is assumed that a machine structural model is installed in a hypothetical system T which is filled with a substance

having a sufficiently small rigidity, as shown in Fig. 2. Now, two points, P1 and P2, are chosen on the machine structural

model, and between the two points a thin circular tube (or a thin square bar) is conceived. Then, it can be considered that

a circular tube (or a square bar) member exists between points P1 and P2.

When the evaluative parameter is the direct static compliance fs(c, c) at point C, the design sensitivity coefficient
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of fs(c, c) with respect to the spring stiffness kp in the axial direction of the member between points Px and P2 is obtained
as follows:

Xc •(Xp, - Xv_) )5 - fg(c, P)Ofs(c,c) _ ( = (24)
Okv 2V s

where Xc is the relative displacement between points A and B caused by the static force at point C, Xp, and Xp2 are the
displacements at points P1 and P2 in the axial direction of the member between points P_ and P2, and Vs is the total strain

energy of the structural model at the displacement state; fs(c, P) is the cross static compliance between points C and P. As

understood from eq. (24), the design sensitivity of the direct static compliance fs(c, c) with respect to a hypothetical spring
between two points having the largest relative displacement is greatest. Hence, the displacement distribution on the machine

structural model can be used as the information for adding an elastic member when the static compliance is required to be
decreased.

(ii) Internal vibratory force

When the internal vibratory force at a structural member or a joint is small, it can be understood that the member or

the joint has a small effect on the vibrational characteristics. If the force is negligibly small, removal of the member or the

joint may have negligible influence on the dynamic characteristics.

On the other hand, when the internal vibratory force Fj is great at a joint, the following two cases exist:
(1) the potential energy distribution rate at the joint is great,

(2) the potential energy distribution rate at the joint is small.

In case (1), the joint has a great effect on the vibrational characteristics, and even small changes of the joint design variables

bring about a great change of the characteristics. In case (2), such small changes of the joint design variables cause little change
of the vibrational characteristics. Great changes of the joint design variables are necessary for a great change of the character-
istics.

The relation on the frequency domain between the excitational input force F E and the internal vibratory force Fj at a

joint similar to the relation between the excitational input force and the displacement shown in eq. (3), is obtained as follows:

Fj hEj m

-- (co) = _ (25)
FE m=l O9 co

1 - (-)2 + 2i--_'m
¢.0m ¢.0m

where hEj m is the modal internal force coefficient at the mth natural mode. The value of hEj m is subject to very little change

due to variations in damping. Hence, values of hEj m can be used for relatively evaluating magnitudes of internal vibratory
forces.

Spring stiffness kj of a spring element at a joint of a machine structural model generally has the relation with the

angular natural frequency co n at the nth natural mode and the modal internal force coefficient hEj n of the spring element as

shown in Fig. 3. Case (1) corresponds to the design at (hypothetical) point Q within the region S, while case (2) corresponds

to the design at (hypothetical) point H within the region T.

It can be understood from Fig. 3 that a joint spring element having a great internal vibratory force but a small potential

energy distribution rate has a great latent effect on the vibrational characteristics, although the value of the design sensitivity
coefficient at that design point is small.

2. 5 Considerations on the Evaluative Parameters and Information for Design Improvement

The following concluding remarks are obtained for the evaluative parameters:

(1) As can be understood from eq. (8), the static compliance fs has a direct influence on the modal flexibility values
at natural modes.

(2) As can be understood from eq. (11), the design sensitivity coefficient of modal flexibility is influenced by the

characteristics at many other natural modes. This fact means that the modal flexibility fn is determined by the systematic

balance over the complete structure. Hence, the modal flexibility needs systematic analyses.

(3) As can be understood from eq. (14), the design sensitivity coefficient of the damping ratio at a natural mode does

not include the influence of characteristics at the other natural modes. In an approximate sense, the damping ratio at a natural
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mode can be changed by adjusting only the characteristics at the natural mode.

(4) As can be understood from eq. (9), the design sensitivity coefficient of natural frequency _,3n does not include
the influence of characteristics at the other natural modes.

Higher priority of evaluation must be given to the evaluative,parameters which need systematic analyses. If evaluative
parameters which can be determined by the local effect are fixed before the systematic evaluation, a great improvement of

the product performance cannot be expected. From the above consideration, priority for evaluation of the frequency re-
sponse should be given in the order of (1) fs, (2) fn, and (3) S'n and _n.

Features of other information for design improvement such as energy distributions, static deformation distributions,

and internal vibratory forces are as follows:

(a) In design changes based on energy distributions, it is not necessary to define a specific design variables. Parts of

the structure which need increased rigidity or decreased weight can be macroscopically grasped. In usual design practice,
first of all, it is required to know where the weak points (regions) in the structure are. In this case, evaluations based on

energy distributions (refs. 1 and 2) are effective.

(b) The static displacement distribution can be used as the information for adding elastic structural members.

(c) The magnitude of the internal vibratory force at a natural mode indicates the degree of influence of the structural

member or the joint on the vibrational characteristics. That can be used as a sort of sensitivity information.

3. STRATEGIES FOR GREATER IMPROVEMENT OF STRUCTURAL DYNAMICS

In usual design problems, many characteristic and evaluative factors often interact mutually. The relationships between

design variables and evaluative factors are very complicated. When the optimum design is required for such design problems,

many local optimum solutions often exist in the feasible design space. Therefore, it is very difficult to obtain a design solution

which brings about great improvement of the product performance. Table 1 shows the procedures which have been developed

for solving those problems. Based on the clarification of competitive and cooperative relationships between characteristics,
the procedures are divided into three phases as shown in Table 1 (ref. 5).

In the following, some technical strategies for greater improvement of structural dynamics will be described. Addition

of elastic members in Section 3.1 can be used in the procedures of phases 1 and 2 in Table 1 ; addition of mass elements in

Section 3.2 can be used in the procedures of phase 2 in Table 1 ; and substantial changes of joint design variables in Section

3.3 can be used in the procedures of phase 3 in Table 1.

The improvement or modification of receptance values is most difficult in structural dynamics. Hence, characteristics
related with the receptance frequency response will be mainly discussed.

3.1 Addition of Elastic Structural Members

In the procedures shown in Table 1, first of all, the static compliance is minimized. When sufficient reduction of the

static compliance cannot be attained by changes of design variables (such as cross-sectional dimensions of the structural mem-

bers), addition of new structural members are useful only if change in the framework is possible.

The procedures for decreasing the static compliance fs(c, c) by addition of an elastic structural member are as follows:
Step 1. Detect points P_ and P2 having a negative value of the right side part of eq. (24) of which the absolute value is

maximum in the feasible region of the machine structural model.

Step 2. Define a thin member region between points P1 and P2, and equalize the Young modulus of the member
element with that of the other structural members.

Step 3. Repeat the search for optimum cross-sectional design variables until the objective function converges. At each

iteration of the search, the locations of points PI and P2 are slightly moved so that the right side part of eq. (24) has the

greatest negative value.

When the objective is to minimize the direct modal flexibility fn(c,c) at the nth natural mode at point C, eq. (13)
can be used as the design sensitivity coefficient with respect to the spring stiffness kp in the axial direction of the hypothetical

member between points P1 and P2. The forementioned procedures for the static compliance can also be applied for minimiz-

ing the modal flexibility by transforming eq. (24) into eq. (13).

3.2 Addition of Mass Elements
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The design sensitivity coefficient of the modal flexibility fn(c, c) at the nth natural mode at point C of a machine
structural system with respect to the small hypothetical mass MI at point I(such as shown in Fig. 2) is given in eq. (15).

The procedures for reducing the modal flexibility fn(c, c) by means of the addition of a mass element are as follows:
Step 1. In order to detect a point where a mass element should be added, search for a point I having a regative value

on the right side part of eq. (15) of which the absolute value is maximum in the feasible region of the machine structural

system, and add a small mass element at point I.

Step 2. If the modal flexibility fn(c, c) is sufficiently small or has reached the convergence point, the added mass
element is adopted for the final design. Otherwise, go to Step 3.

Step 3. Modify the point I so that the right side part of eq. (15) has anegative maximum absolute value, and increase
the magnitude of the mass at point I and return to Step 2.

3.3 Substantial Changes of Joint Design Variables

In a usual searching process for an optimum design solution, initial design variables are slightly changed so that the

objective function is most effectively minimized (or maximized). Hence, if an initial design variable has a low sensitivity for

changing the objective function and is widely different from the optimum solution, it takes a very long time to reach the

optimum solution, and the design variable often converges into some local optimum point without reaching the optimum
solution.

From the standpoint of static rigidity (that is, reciprocal of the static compliance), the rigidity of a joint is required to

be as great as possible. However, from the standpoint of dynamic characteristics, the rigidity of a point is required to have a

specific value or a value within a specific region in the following cases:

(i) when a change in the ratio fn/fs of the modal flexibility fn to the static compliance fs is required,

(ii) when an increase of the damping ratio at the natural mode is required.

When the spring stiffness of a joint in the initial design of a structural model has the value at point H as shown in

Fig. 3, the design sensitivity coefficient at the point is very small, and potential energy is scarcely stored at the spring. Hence,
the spring stiffness may not be changed largely to the region S, and a sufficient change of the vibrational characteristics cannot

be generated. In order to attain objective (i) or (ii), the spring stiffness at the joint should be reduced to the region S. If

the internal vibratory force at the spring element is large at point H, there is a high possibility to realize objective (i) or (ii)
effectively with this spring element.

The procedures for realizing objective (i) or (ii) are as follows:

Step 1. Detect a spring element having the great internal vibratory force but a small potential energy distribution rate

among spring elements of all the joints (the spring stiffness kj at the spring element has a value within the region T as shown
in Fig. 3).

Step 2. Decrease the spring stiffness kj to a value within the region S as shown in Fig. 3.

Step 3. Start the search for the optimum value after having reduced the spring stiffness kj to get a new initial value.

4. NUMERICAL EXAMPLE

The procedures described in Section 3 are demonstrated on the machine structural model shown in Fig. 4. Fig. 5 shows

the simulation model for structural analysis. At the initial design shown in Fig. 6(a), the spring stiffness values at joints Jl,

J2, J3 and J4(see Fig. 5) were large enough for avoiding degradation of the static rigidity. The relative receptance frequency

response between points A and B in Y-direction for this initial model is shown in Fig. 7(a). The receptance value at the 1st

natural mode is very large, and the ratio fl/fs of the modal flexibility fl at the 1st natural mode to the static compliance fs
is 0.96. The three kinds of procedures proposed in Section 3 were successively added on the same structural model.

4. 1 Addition of an Elastic Member

The objective in this step is to decrease the static compliance fs by adding a circular tube within the shaded region in

Fig. 5. Fig. 6(b) shows the final design obtained according to the procedures described in Section 3.1. The receptance fre-

quency response for the design is shown in Fig. 7(b). The static compliance fs decreases from 2.36x 10 -6 m/N at the initial
design to 1.33 x 10 -6 m/N. The incremental percentage of the total weight of the structural model by addition of the elastic

member is only 0.0134%.

292



4.2 Addition of a Mass Element

The objective in this step is to decrease the maximum modal flexibility value at the 1st natural mode. A mass element

was added at point I of the model as shown in Fig. 6(c) according to the procedures described in Section 3.2. Fig. 7(c) shows

the receptance frequency response after the design change. The maximum modal flexibility value decreased by 6%.

4. 3 Substantial Changes of Joint Design Variables

The objective in this step is to minimize the maximum receptance value over the whole frequency range. The modal

internal force coefficient hEj 1 of the 1st natural mode was large at the spring element in Y-direction of joint J4- The spring
stiffness kj of the spring element was 1.0x 108 N/m. Since the potential energy distribution rate at the spring element was

very small (that means the design sensitivity coefficient is also very small), the spring stiffness kj was greatly reduced to the
value of 2.0x10 s N/m. After this spring stiffness value was set as an initial design variable of kj, the spring stiffness kj and

the damping coefficients of all joints 01 through J4) were determined so that the maximum receptance value was minimized.

Fig. 7(d) shows the receptance frequency response after the proposed procedures. By these procedures, two requirements

(i) great reduction of the ratio fn/f s of the modal flexibility fn at the natural mode having the greatest receptance value to

the static comprance fs and (ii) great increase of the damping ratio at the natural mode (decribed at Section 3.3) were simul-
taneously accomplished.

It can be understood from comparison of the receptance frequency response in Fig. 7(d) with that in Fig. 7(a) that

the proposed procedures are effective for greater improvement of the vibrational characteristics (the maximum receptance
value).

5. CONCLUDING REMARKS

Methodologies for greatly improving machine structural dynamics by using design sensitivity analyses and evaluative
parameters were proposed. The features are as follows:

(1) Addition of elastic members and mass elements is carried out using information of displacement distributions and
design sensitivity analyses for altering the initial framework of a structural model.

(2) Substartial changes of joint design variables are conducted using information of internal vibratory forces and
potential energy distributions for the improvement of the poor initial design variables.

1.

.

.

4.

.
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Table 1. Procedures for the design optimization method based on clarification of competitive-coopera-
tive relationships between characteristics (ref. 5)

Phase 1

Phase 2

Phase 3

Design variables

o Design variables of structural

members and elements having an

influence on the static rigidity

o Design variables of structural

members and elements and joint

stiffnesses having no influence on
the static rigidity

o Damping coefficients of all joints

Range of modeling, type of modeling

and analytical method

o Modeling for a structure on the

static force loop

o Static rigidity analysis

o Modeling for a complete structure

o Vibrational analysis for an

undamped vibrational system

o Modeling for a complete structure

o Vibrational analysis for a non-

proportionally damped vibrational
system
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System T

Fig. 2 A structural model in a hypothetical system T
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Fig. 3

hEJn

Spring stiffness, kj

Relation between the spring stiffness kj at a joint, and

the modal internal force coefficient hEJn and the natural

frequency a_n at the n th natural mode
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Fig. 4 Structural model of a machine tool

(unit : ram)
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Fig. 5 Simulation model for structural analysis
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Fig. 6
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(c) Addition ol a mass element

Alteration of structural configuration by a series of desi,2-m changes
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Relative receptance frequency response R between points A and B corresponding to the
design changes shown in Fig. 6
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